

INSTRUCTION \& SAFETY MANUAL

SIL 2 Temperature Signal Converter, Duplicator, Adder/Subtractor Din-Rail Models D1072S, D1072D

Characteristics

General Description: The single and dual channel DIN Rail Temperature Signal Converter D1072S and D1072D accepts a low level dc signal from millivolt, thermocouple or RTD temperature sensor, located in Hazardous Area, and converts, with isolation, the signal to drive a Safe Area load. Output signal can be direct or reverse. Duplicator function provides two independent outputs for the single input.
Adder, subtractor, low/high selector functions provides two independent outputs representing input A, input B, input A plus input B, input A minus input B, low/high selector.
Function: 1 or 2 channel I.S. input from mV , thermocouples, $3-4$ wires resistance thermometers, transmitting potentiometers, provides 3 port isolation (input/output/supply) and current (source mode) or voltage output signal. Duplicator, adder, subtractor, low/high selector function provided. The programmable RTD line resistance compensation allows the use of 2 wires RTDs or error compensation for $3-4$ wires RTDs. Reference junction compensation can be automatic, with option 91 , or fixed by software setting.
Signalling LEDs: Power supply indication (green), burnout (red).
Configurability: Totally software configurable, no jumpers or switches, input sensor, connection mode, burnout operation, mA or V output signal, by GM Pocket Portable Configurator PPC1090, powered by the unit or configured by PC via RS-232 serial line with PPC1092 Adapter and SWC1090 Configurator software. A 16 characters tag can be inserted using SWC1090 Configurator software. To operate PPC1090 or PPC1092 refer to instruction manual.
EMC: Fully compliant with CE marking applicable requirements.

Technical Data

Supply: 12-24 Vdc nom (10 to 30 Vdc) reverse polarity protected, ripple within voltage limits $\leq 5 \mathrm{Vpp}$.
Current consumption @ $24 \mathrm{~V}: 70 \mathrm{~mA}$ for 2 channels D1072D, 45 mA for 1 channel D1072S with 20 mA output typical.
Current consumption @ 12 V: 140 mA for 2 channels D1072D, 80 mA for 1 channel D1072S with 20 mA output typical.
Power dissipation: 1.5 W for 2 channels D1072D, 1.0 W for 1 channel D1072S with 24 V supply voltage and 20 mA output typical.
Max. power consumption: at 30 V supply voltage, overload condition and PPC1090 connected, 2.1 W for 2 channels D1072D, 1.4 W for 1 channel D1072S.
Isolation (Test Voltage): I.S. In/Out 1.5 KV; I.S. In/Supply 1.5 KV ; I.S. In/I.S. In 500 V ; Out/Supply 500 V ; Out/Out 500 V.
Input: millivolt or thermocouple type A1, A2, A3, B, E, J, K, L, Lr, N, R, S, S1, T, U or 3-4 wires RTD Pt100, Pt200, Pt300 to DIN43760, Pt100 (0.3916), Ni100 Ni120 or
Pt500, Pt100, Pt50, Cu100, Cu53, Cu50, Cu46 (russian standard) or 3 wires transmitting potentiometer (50Ω to $20 \mathrm{~K} \Omega$).
Integration time: 500 ms .
Resolution: $5 \mu \mathrm{~V}$ on mV or thermocouple, $1 \mu \mathrm{~V}$ thermocouple type $\mathrm{B}, \mathrm{R}, \mathrm{S}, \mathrm{S} 1,2 \mu \mathrm{~V}$ thermocouple $\mathrm{A} 1, \mathrm{~A} 2, \mathrm{~A} 3,20 \mathrm{~m} \Omega$ on RTD, 0.05% on transmitting potentiometer.
Visualization: $0.1^{\circ} \mathrm{C}$ on temperature, $10 \mu \mathrm{~V}$ on $\mathrm{mV}, 0.1 \%$ on potentiometer.
Input range: within rated limits of sensor (-10 to +80 mV).
Measuring RTD current: $\leq 0.5 \mathrm{~mA}$.
RTD line resistance compensation: $\leq 10 \Omega$.
RTD line resistance error compensation: -5 to $+20 \Omega$, programmable.
Thermocouple Reference Junction Compensation: automatic, by external sensor OPT1091 separately ordered, or fixed programmable from -60 to $+100^{\circ} \mathrm{C}$.
Thermocouple burnout current: $\leq 30 \mathrm{nA}$.
Burnout: enabled or disabled. Analog output can be programmed to detect burnout condition with downscale or highscale forcing. Burnout condition signalled by red front panel LED.
Output: $0 / 4$ to 20 mA , on max. 600Ω load source mode, current limited at 22 mA or $0 / 1$ to 5 V or $0 / 2$ to 10 V signal, limited at 11 V .
Resolution: $2 \mu \mathrm{~A}$ current output or 1 mV voltage output.
Transfer characteristic: linear or reverse on mV or transmitting potentiometer, temperature linear or reverse on temperature sensors.
Response time: $\leq 50 \mathrm{~ms}$ (10 to 90% step change).
Output ripple: $\leq 20 \mathrm{mV}$ rms on 250Ω load.
Performance: Ref. Conditions 24 V supply, 250Ω load, $23 \pm 1^{\circ} \mathrm{C}$ ambient temperature.
Input: Calibration and linearity accuracy: $\leq \pm 40 \mu \mathrm{~V}$ on mV or thermocouple, $200 \mathrm{~m} \Omega$ on RTD, 0.2% on potentiometer or $\pm 0.05 \%$ of input value.
Temperature influence: $\leq \pm 2 \mu \mathrm{~V}, 20 \mathrm{~m} \Omega, 0.02 \%$ or $\pm 0.01 \%$ of input value for a $1^{\circ} \mathrm{C}$ change.
Ref. Junction Compensation influence: $\leq \pm 1^{\circ} \mathrm{C}$ (thermocouple sensor).
Analog Output: Calibration accuracy: $\leq \pm 0.1 \%$ of full scale.
Linearity error: $\leq \pm 0.05 \%$ of full scale.
Supply voltage influence: $\leq \pm 0.05 \%$ of full scale for a min to max supply change.
Load influence: $\leq \pm 0.05 \%$ of full scale for a 0 to 100% load resistance change.
Temperature influence: $\leq \pm 0.01 \%$ on zero and span for a $1^{\circ} \mathrm{C}$ change.
Compatibility:
CE mark compliant, conforms to Directive: 2014/34/EU ATEX, 2014/30/EU EMC, 2014/35/EU LVD, 2011/65/EU RoHS.
Environmental conditions:
Operating: temperature limits -20 to $+60^{\circ} \mathrm{C}$, relative humidity $\max 95 \%$.
Storage: temperature limits -45 to $+80^{\circ} \mathrm{C}$.
Safety Description:

ATEX: II (1) G [Ex ia Ga] IIC, II (1) D [Ex ia Da] IIIC, I (M1) [Ex ia Ma] I, II 3G Ex nA IIC T4 Gc
IECEx / INMETRO: [Ex ia Ga] IIC, [Ex ia Da] IIIC, [Ex ia Ma] I, Ex nA IIC T4 Gc
associated electrical apparatus.
$\mathrm{Uo} / \mathrm{Voc}=10.8 \mathrm{~V}, \mathrm{lo} / \mathrm{lsc}=9 \mathrm{~mA}, \mathrm{Po} / \mathrm{Po}=24 \mathrm{~mW}$ at terminals 13-14-15-16, 9-10-11-12.
Ui/Vmax $=18 \mathrm{~V}, \mathrm{Ci}=6 \mathrm{nF}, \mathrm{Li}=0 \mathrm{nH}$ at terminals 13-14-15-16, 9-10-11-12.
Um $=250$ Vrms, $-20^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 60^{\circ} \mathrm{C}$.
Approvals:
DMT 01 ATEX E 042 X conforms to EN60079-0, EN60079-11, EN60079-26.
IECEx BVS 07.0027X conforms to IEC60079-0, IEC60079-11, IEC60079-26.
IMQ 09 ATEX 013 X conforms to EN60079-0, EN60079-15.
IECEx IMQ 13.0011X conforms to IEC60079-0, IEC60079-15.
UL \& C-UL E222308 conforms to UL913, UL 60079-0, UL60079-11, UL60079-15,
ANSI/ISA 12.12.01 for UL and CSA-C22.2 No.157-92, CSA-E60079-0, CSA-E60079-11, CSA-C22.2 No. 213 and CSA-E60079-15 for C-UL.
FM \& FM-C No. 3024643, 3029921C, conforms to Class 3600, 3610, 3611, 3810,
ANSI/ISA 12.12.02, ANSI/ISA 60079-0, ANSI/ISA 60079-11, C22.2 No.142,
C22.2 No.157, C22.2 No.213, E60079-0, E60079-11, E60079-15.
C-IT.MH04.B.00306 conforms to GOST R IEC 60079-0,GOST R IEC 60079-11, GOST R IEC 60079-15.
СЦ 16.0034 X conforms to ДСТУ 7113, ГОСТ 22782.5-78, ДСТУ IEC 60079-15.
TUV Certificate No. C-IS-236198-02, SIL 2 according to IEC 61511.
DNV No.A-13778 and KR No.MIL20769-EL001 Certificates for maritime applications.
Mounting: T35 DIN Rail according to EN50022.
Weight: about 170 g D1072D, 140 g D1072S.
Connection: by polarized plug-in disconnect screw terminal blocks to accommodate terminations up to $2.5 \mathrm{~mm}^{2}$.
Location: Safe Area/Non Hazardous Locations or Zone 2, Group IIC T4, Class I, Division 2, Groups A, B, C, D Temperature Code T4 and Class I, Zone 2, Group IIC, IIB, IIA T4 installation.

Protection class: IP 20.

Dimensions: Width 22.5 mm , Depth 99 mm , Height 114.5 mm .

Model: D1072			
1 channel 2 channels	S	/B	
Power Bus enclosure			

Operating parameters are programmable by the GM Pocket Portable Configurator PPC1090 or via RS-232 serial line with PPC1092 Adapter and SWC1090 Configurator software. If the parameters are provided with the purchasing order the unit will be configured accordingly, otherwise the unit will be supplied with default parameters.
NOTE: for thermocouple sensor input, the Reference Junction Compensator is required for automatic ambient temperature compensation. It has to be ordered as OPT1091, it will be supplied separately and it has to be connected to the input terminal blocks as indicated in the function diagram.

Front Panel and Features

- SIL 2 according to IEC 61511 (for current output)

D1072S: \quad Tproof $=2 / 10$ yrs ($\leq 10 \% />10 \%$ of total SIF) \quad PFDavg (1 year) 3.35 E-04, SFF 76.12%;
D1072D: Tproof $=2 / 10$ yrs ($\leq 10 \% />10 \%$ of total SIF) PFDavg (1 year) $3.74 \mathrm{E}-04$, SFF 76.40%.

- Input from Zone 0 (Zone 20), Division 1, installation in Zone 2, Division 2.
- mV, thermocouples, RTD or transmitting potentiometers Input Signal.
- Programmable RTD line resistance compensation.
- Reference Junction Compensation automatic or fixed (programmable value).
- 0/4-20 mA, 0/1-5 V, 0/2-10 V Output Signal temperature linear or reverse.
- Duplicated output for single channel input.
- Adder, Subtractor, low/high Selector.
- 16 characters tag for each channel.
- Common burnout detection available when using Power Bus enclosure.
- High Accuracy, $\mu \mathrm{P}$ controlled A/D converter.
- Three port isolation, Input/Output/Supply.
- EMC Compatibility to EN61000-6-2, EN61000-6-4.
- Fully programmable operating parameters.
- ATEX, IECEx, UL \& C-UL, FM \& FM-C, INMETRO, EAC-EX, UKR TR n. 898, TÜV Certifications.
- TÜV Functional Safety Certification.
- Type Approval Certificate DNV and KR for maritime applications.
- High Reliability, SMD components.
- High Density, two channels per unit.
- Simplified installation using standard DIN Rail and plug-in terminal blocks.
- 250 Vrms (Um) max. voltage allowed to the instruments associated with the barrier.

Terminal block connections

HAZARDOUS AREA
Input Ch 2 for Reference Junction Compensator Option 91 or Input Ch 2 for 3-4 wire RTD or potentiometer

Input Ch 2 for 3-4 wire RTD

+ Input Ch 2 for thermocouple TC or Input Ch 2 for 4 wire RTD or Input Ch 2 for potentiometer
- Input Ch 2 for thermocouple TC or Input Ch 2 for
$3-4$ wire RTD or potentiometer
Input Ch 1 for Reference Junction Compensator Option 91 or Input Ch 1 for 3-4 wire RTD or potentiometer
+ Input Ch 1 for thermocouple TC or Input Ch 1 for 4 wire RTD or for potentiometer
- Input Ch 1 for thermocouple TC or Input Ch 1 for 3-4 wire RTD or potentiometer

SAFE AREA

1
2
3

4

5

6

7

8 Not used

In the system safety analysis, always check the Hazardous Area/Hazardous Locations devices to conform with the related system documentation, if the device is Intrinsically Safe check its suitability for the Hazardous Area/Hazardous Locations and gas group encountered and that its maximum allowable voltage, current, power (Ui/Vmax, li/lmax, Pi/Pi) are not exceeded by the safety parameters ($\mathrm{Uo} / \mathrm{Voc}, \mathrm{lo} / \mathrm{lsc}, \mathrm{Po} / \mathrm{Po}$) of the D1072 Associated Apparatus connected to it. Also consider the maximum operating temperature of the field device, check that added connecting cable and field device capacitance and inductance do not exceed the limits ($\mathrm{Co} / \mathrm{Ca}, \mathrm{Lo} / \mathrm{La}, \mathrm{Lo} / \mathrm{Ro}$) given in the Associated Apparatus parameters for the effective gas group. See parameters on enclosure side and the ones indicated in the table below:

D1072 Terminals		D1072 Associated Apparatus Parameters		Must be	Hazardous Areal Hazardous Locations Device Parameters
Ch1	13-14-15-16	Uo / Voc = 10.8 V			
Ch2	9-10-11-12			\leq	Ui/Vmax
Ch1	13-14-15-16	Io $/ \mathrm{lsc}=9 \mathrm{~mA}$		\leq	li/ Imax
Ch2	9-10-11-12				
Ch1	13-14-15-16	Po / Po = 24 mW		\leq	Pi/ Pi
Ch2	9-10-11-12				
D1072 Terminals		D1072 Associated Apparatus Parameters		Must be	Hazardous Areal Hazardous Locations Device + Cable Parameters
		$\mathrm{Co} / \mathrm{Ca}=2.134 \mu \mathrm{~F}$	(IIC-A, B)	\geq	$\mathrm{Ci} / \mathrm{Ci}$ device +C cable
Ch1	13-14-15-16	$\mathrm{Co} / \mathrm{Ca}=14.994 \mu \mathrm{~F}$	(IIB-C)		
Ch2	9-10-11-12	$\mathrm{Co} / \mathrm{Ca}=65.994 \mu \mathrm{~F}$	(IIA-D)		
		$\mathrm{Co} / \mathrm{Ca}=58 \mu \mathrm{~F}$	(I)		
		$\mathrm{Co} / \mathrm{Ca}=14.994 \mu \mathrm{~F}$	(IIIC)		
		Lo / La $=468 \mathrm{mH}$	(IIC-A, B)	\geq	Li / Li device + L cable
Ch1	13-14-15-16	Lo / La $=1874 \mathrm{mH}$	(IIB-C)		
Ch2	9-10-11-12	Lo / La $=3749 \mathrm{mH}$	(IIA-D)		
		Lo / La $=6100 \mathrm{mH}$	(I)		
		Lo / La $=1874 \mathrm{mH}$	(IIIC)		
		Lo / Ro = $1510 \mu \mathrm{H} / \mathrm{\Omega}$	(IIC-A, B)	\geq	Li / Ri device and L cable / R cable
Ch1	13-14-15-16	Lo / Ro $=6050 \mu \mathrm{H} / \Omega$	(IIB-C)		
Ch2	9-10-11-12	Lo / Ro $=12100 \mu \mathrm{H} / \Omega$	(IIA-D)		
		Lo / Ro $=19850 \mu \mathrm{H} / \Omega$	(I)		
		Lo / Ro = $6050 \mu \mathrm{H} / \Omega$	(IIIC)		

NOTE for USA and Canada:
IIC equal to Gas Groups A, B, C, D, E, F and G
IIB equal to Gas Groups C, D, E, F and G

IIA equal to Gas Groups D, E, F and G

When used with separate powered intrinsically safe devices, check that maximum allowable voltage (Ui/Vmax) of the D1072 Associated Apparatus are not exceeded by the safety parameters ($\mathrm{Uo} / \mathrm{Voc}$) of the Intrinsically Safe device, indicated in the table below:

D1072 Terminals	D1072 Associated Apparatus Parameters	$\begin{gathered} \text { Must } \\ \text { be } \end{gathered}$	Hazardous Areal Hazardous Locations Device Parameters
Ch1 13-14-15-16			
Ch2 - -10-11-12	Ui $/ \mathrm{V} \max =18 \mathrm{~V}$	\geq	Uo/Voc
Ch1 13-14-15-16			
Ch2 9-10-11-12	$\mathrm{Ci}=6 \mathrm{nF}, \mathrm{Li}=0 \mathrm{nH}$		

For installations in which both the Ci and Li of the Intrinsically Safe apparatus exceed 1% of the Co and Lo parameters of the Associated Apparatus (excluding the cable), then 50% of Co and Lo parameters are applicable and shall not be exceeded (50% of the Co and Lo become the limits which must include the cable such that Ci device +C cable $\leq 50 \%$ of Co and Li device +L cable $\leq 50 \%$ of Lo).
If the cable parameters are unknown, the following value may be used: Capacitance 60 pF per foot (180 pF per meter), Inductance $0.20 \mu \mathrm{H}$ per foot ($0.60 \mu \mathrm{H}$ per meter).
The Intrinsic Safety Entity Concept allows the interconnection of Intrinsically Safe devices approved with entity parameters not specifically examined in combination as a system when the above conditions are respected.
For Division 1 and Zone 0 installations, the configuration of Intrinsically Safe Equipment must be FM approved under Entity Concept (or third party approved);
for Division 2 installations, the configuration of Intrinsically Safe Equipment must be FM approved under non-incendive field wiring or Entity Concept (or third party approved).

HAZARDOUS AREA ZONE 0 (ZONE 20) GROUP IIC, HAZARDOUS LOCATIONS CLASS I, DIVISION 1, GROUPS A, B, C, D, CLASS II, DIVISION 1, GROUPS E, F, G, CLASS III, DIVISION 1, CLASS I, ZONE 0, GROUP IIC

SAFE AREA, ZONE 2 GROUP IIC T4, NON HAZARDOUS LOCATIONS, CLASS I, DIVISION 2 , GROUPS A, B, C, D T-Code T4, CLASS I, ZONE 2, GROUP IIC T4

Function Diagram

HAZARDOUS AREA ZONE 0 (ZONE 20) GROUP IIC,
HAZARDOUS LOCATIONS CLASS I, DIVISION 1, GROUPS A, B, C, D, CLASS II, DIVISION 1, GROUPS E, F, G, CLASS III, DIVISION 1 , CLASS I, ZONE 0, GROUP IIC

HAZARDOUS AREA ZONE 0 (ZONE 20) GROUP IIC,
HAZARDOUS LOCATIONS CLASS I, DIVISION 1, GROUPS A, B, C, D, CLASS II, DIVISION 1, GROUPS E, F, G, CLASS III, DIVISION 1, CLASS I, ZONE 0, GROUP IIC

Functional Safety Manual and Application

Application for D1072S , with 4-20 mA Current Output

Description:

For this application, enable 4-20 mA Source mode for ch. 1 (see page 13 for more information).
The module is powered by connecting 12-24 Vdc power supply to Pins 3 (+ positive) and 4 (- negative). The green LED is lit in presence of supply power.
Input sensor (Thermocouple, RTD, Potentiometer) is applied from Pins 13 to 16 (see page 13 for more information about input settings).
Source output current is applied to Pins 1-2 (for ch. 1).

Safety Function and Failure behavior:

D1072S is considered to be operating in Low Demand mode, as a Type B module, having Hardware Fault Tolerance (HFT) $=0$.
The failure behaviour of D1072S module (only the 4-20 mA current output configuration is used for safety applications) is described from the following definitions :
\square Fail-Safe State: is defined as the output going Low or High, considering that the safety logic solver can convert the Low or High fail (dangerous detected) to the fail-safe state.
\square Fail Safe: failure mode that causes the module / (sub)system to go to the defined fail-safe state without a demand from the process.
\square Fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state) or deviates the output current by more than $3 \%(\pm 0.5 \mathrm{~mA})$ of full span.
\square Fail High: failure mode that causes the output signal to go above the maximum output current (>20 mA). This limit value can be programmed from the user, but in this analysis it is set to 20 mA . Assuming that the application program in the safety logic solver is configured to detect High failure and does not automatically trip on this failure, this failure has been classified as a dangerous detected (DD) failure.
\square Fail Low: failure mode that causes the output signal to go below the minimum output current ($<4 \mathrm{~mA}$). This limit value can be programmed from the user, but in this analysis it is set to 4 mA . Assuming that the application program in the safety logic solver is configured to detect Low failure and does not automatically trip on this failure, this failure has been classified as a dangerous detected (DD) failure.
\square Fail "No Effect": failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure nor a dangerous failure. When calculating the SFF, this failure mode is not taken into account.

- Fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. When calculating the SFF this failure mode is not taken into account.
As the module is supposed to be proven-in-use device, therefore according to the requirements of IEC $61511-1$ section 11.4 .4 , a $\mathrm{HFT}=0$ is sufficient for SIL 2 (sub-) systems including
Type B components and having a SFF equal or more than 60% and less than 90%.
Failure rate date: taken from Siemens Standard SN29500.
Failure rate table:

Failure category	Failure rates (FIT)
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	242.35
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	76.01
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{\text {su }}=$ Total Safe Undetected failures	0.00
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function $)=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	318.36
MTBF $($ safety function, single channel $)=\left(1 / \lambda_{\text {tot safe }}\right)+$ MTTR $(\mathbf{8}$ hours $)$	$\mathbf{3 5 8}$ years
$\lambda_{\text {no effect }}=$ "No Effect" failures	154.04
$\lambda_{\text {not part }}=$ "Not Part" failures	31.40
$\lambda_{\text {tot device }}=$ Total Failure Rate $($ Device $)=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	$\mathbf{5 0 3 . 8 0}$
MTBF $($ device, single channel $)=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR $(\mathbf{8}$ hours $)$	$\mathbf{2 2 6}$ years

Failure rates table according to IEC 61508:2010 Ed. 2 :

$\boldsymbol{\lambda}_{\text {sd }}$	$\boldsymbol{\lambda}_{\text {su }}$	$\boldsymbol{\lambda}_{\text {dd }}$	$\boldsymbol{\lambda}_{\text {du }}$	SFF	DC $_{\text {s }}$	DC $_{\text {D }}$
0.00 FIT	0.00 FIT	242.35 FIT	76.01 FIT	76.12%	0%	76.12%

where $D C$ means the diagnostic coverage (safe or dangerous) for the input sensor by the safety logic solver and internal diagnostic circuits. This type " B " system has SFF $=76.12 \% \geq 60 \%$ and HFT $=0$, which is sufficient to get SIL 2 in accordance with the requirements of IEC $61511-1$ section 11.4.4 during a proven-in-use assessment.
PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:
$T[$ Proof $]=1$ year $\quad T[$ Proof $]=2$ years

PFDavg $=3.35 \mathrm{E}-04$ Valid for SIL $2 \quad$ PFDavg $=6.70 \mathrm{E}-04$ Valid for SIL 2
PFDavg vs T[Prooff table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

Functional Safety Manual and Application

Description:

For this application, enable 4-20 mA Source mode for ch. 1 and ch. 2 (see page 13 for more information).
The module is powered by connecting $12-24 \mathrm{Vdc}$ power supply to Pins 3 (+ positive) and 4 (- negative). The green LED is lit in presence of supply power.
Input sensor (Thermocouple, RTD, Potentiometer) is applied from Pins 13 to 16 (for ch. 1) and from Pins 9 to 12 (for ch. 2) (see page 13 for more information about input settings). Source output current is applied to Pins 1-2 (for ch. 1) and to Pins 5-6 (for ch.2).

Safety Function and Failure behavior:

D1072D is considered to be operating in Low Demand mode, as a Type B module, having Hardware Fault Tolerance (HFT) $=0$.
The failure behaviour of D1072D module (only the $4-20 \mathrm{~mA}$ current output configuration is used for safety applications) is described from the following definitions :
\square Fail-Safe State: is defined as the output going Low or High, considering that the safety logic solver can convert the Low or High fail (dangerous detected) to the fail-safe state.
\square Fail Safe: failure mode that causes the module / (sub)system to go to the defined fail-safe state without a demand from the process.
\square Fail Dangerous: failure mode that does not respond to a demand from the process (i.e. being unable to go to the defined fail-safe state) or deviates the output current by more than $3 \%(\pm 0.5 \mathrm{~mA})$ of full span.
\square Fail High: failure mode that causes the output signal to go above the maximum output current (> 20 mA). This limit value can be programmed from the user, but in this analysis it is set to 20 mA . Assuming that the application program in the safety logic solver is configured to detect High failure and does not automatically trip on this failure, this failure has been classified as a dangerous detected (DD) failure
\square Fail Low: failure mode that causes the output signal to go below the minimum output current (<4 mA). This limit value can be programmed from the user, but in this analysis it is set to 4 mA . Assuming that the application program in the safety logic solver is configured to detect Low failure and does not automatically trip on this failure, this failure has been classified as a dangerous detected (DD) failure.

- Fail "No Effect": failure mode of a component that plays a part in implementing the safety function but that is neither a safe failure nor a dangerous failure. When calculating the SFF, this failure mode is not taken into account.
\square Fail "Not part": failure mode of a component which is not part of the safety function but part of the circuit diagram and is listed for completeness. When calculating the SFF this failure mode is not taken into account.
As the module is supposed to be proven-in-use device, therefore according to the requirements of IEC $61511-1$ section 11.4 .4 , a $\mathrm{HFT}=0$ is sufficient for SIL 2 (sub-) systems including
Type B components and having a SFF equal or more than 60% and less than 90%.
Failure rate date: taken from Siemens Standard SN29500.
Failure rate table:

Failure category	Failure rates (FIT)
$\lambda_{\text {dd }}=$ Total Dangerous Detected failures	274.16
$\lambda_{\text {du }}=$ Total Dangerous Undetected failures	84.66
$\lambda_{\text {sd }}=$ Total Safe Detected failures	0.00
$\lambda_{\text {su }}=$ Total Safe Undetected failures	0.00
$\lambda_{\text {tot safe }}=$ Total Failure Rate (Safety Function) $=\lambda_{\text {dd }}+\lambda_{\text {du }}+\lambda_{\text {sd }}+\lambda_{\text {su }}$	358.82
MTBF (safety function, one channel) $=\left(1 / \lambda_{\text {tot safe }}\right)+$ MTTR (8 hours)	318 years
$\lambda_{\text {no effect }}=$ "No Effect" failures	248.18
$\lambda_{\text {not part }}=$ "Not Part" failures	145.60
$\lambda_{\text {tot device }}=$ Total Failure Rate (Device) $=\lambda_{\text {tot safe }}+\lambda_{\text {no effect }}+\lambda_{\text {not part }}$	752.60
MTBF (device, one channel) $=\left(1 / \lambda_{\text {tot device }}\right)+$ MTTR (8 hours)	151 years

Failure rates table according to IEC 61508:2010 Ed. 2 :

$\boldsymbol{\lambda}_{\text {sd }}$	$\lambda_{\text {su }}$	$\lambda_{\text {dd }}$	$\lambda_{\text {du }}$	SFF	DC $_{\text {s }}$	DC $_{\text {d }}$
0.00 FIT	0.00 FIT	274.16 FIT	84.66 FIT	76.40%	0%	76.40%

where DC means the diagnostic coverage (safe or dangerous) for the input sensor by the safety logic solver and internal diagnostic circuits. This type " B " system has SFF $=76.40 \% \geq 60 \%$ and HFT $=0$, which is sufficient to get SIL 2 in accordance with the requirements of IEC 61511-1 section 11.4.4 during a proven-in-use assessment.

PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $\leq 10 \%$ of total SIF dangerous failures:

\section*{| T[Proof] $=1$ year | T[Proof] $=2$ years |
| :--- | :--- |}

PFDavg = 3.74 E-04 Valid for SIL $2 \quad$ PFDavg = 7.48 E-04 Valid for SIL 2
PFDavg vs T[Proof] table (assuming Proof Test coverage of 99%), with determination of SIL supposing module contributes $>10 \%$ of total SIF dangerous failures:

Testing procedure at T-proof

The proof test shall be performed to reveal dangerous faults which are undetected by diagnostic.
This means that it is necessary to specify how dangerous undetected faults, which have been noted during the FMEDA, can be revealed during the proof test.

Proof test 1 (to reveal 50% of possible Dangerous Undetected failures)

Steps Action

Bypass the safety PLC or take other appropriate action to avoid a false trip.
2 Send a command to the temperature converter to go to the full scale current output and verify that the analog current reaches that value.
This tests for compliance voltage problems such as a low loop power supply voltage or increased wiring resistance. This also tests for other possible failures.
3 Send a command to the temperature converter to go to the low scale current output and verify that the analog current reaches that value.
This tests for possible quiescent current related failures.
4 Restore the loop to full operation.
5 Remove the bypass from the safety-related PLC or otherwise restore normal operation.
Proof test 2 (to reveal 99% of possible Dangerous Undetected failures)
Steps Action
Bypass the safety PLC or take other appropriate action to avoid a false trip.
2 Perform steps 2 and 3 of Proof Test 1.
3 Perform a two-point calibration of the temperature converter (i.e. 4 mA and 20 mA) and verify that the output current from the module is within the specified accuracy.
4 Restore the loop to full operation.
5 Remove the bypass from the safety-related PLC or otherwise restore normal operation.

Warning

D1072 series are isolated Intrinsically Safe Associated Apparatus installed into standard EN50022 T35 DIN Rail located in Safe Area/ Non Hazardous Locations or Zone 2, Group IIC, Temperature Classification T4, Class I, Division 2, Groups A, B, C, D, Temperature Code T4 and Class I, Zone 2, Group IIC, IIB, IIA Temperature Code T4 Hazardous Area/Hazardous Locations (according to EN/IEC60079-16, FM Class No. 3611, CSA-C22.2 No. 213-M1987, CSA-E60079-16) within the specified operating temperature limits Tamb -20 to $+60^{\circ} \mathrm{C}$, and connected to equipment with a maximum limit for AC power supply Um of 250 Vrms .

Non-incendive field wiring is not recognized by the Canadian Electrical Code, installation is permitted in the US only.
For installation of the unit in a Class I, Division 2 or Class I, Zone 2 location, the wiring between the control equipment and the D1072 associated apparatus shall be accomplished via conduit connections or another acceptable Division 2, Zone 2 wiring method according to the NEC and the CEC.
Not to be connected to control equipment that uses or generates more than 250 Vrms or Vdc with respect to earth ground.
D1072 series must be installed, operated and maintained only by qualified personnel, in accordance to the relevant national/international installation standards (e.g. IEC/EN60079-14 Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines), BS 5345 Pt4, VDE 165 , ANSI/ISA RP12.06.01 Installation of Intrinsically Safe System for Hazardous (Classified) Locations, National Electrical Code NEC ANSI/ NFPA 70 Section 504 and 505 , Canadian Electrical Code CEC) following the established installation rules, particular care shall be given to segregation and clear identification of I.S. conductors from non I.S. ones. De-energize power source (turn off power supply voltage) before plug or unplug the terminal blocks when installed in Hazardous Area/Hazardous Locations or unless area is known to be nonhazardous.
Warning: substitution of components may impair Intrinsic Safety and suitability for Division 2, Zone 2.
Explosion Hazard: to prevent ignition of flammable or combustible atmospheres, disconnect power before servicing or unless area is known to be nonhazardous.
Failure to properly installation or use of the equipment may risk to damage the unit or severe personal injury.
The unit cannot be repaired by the end user and must be returned to the manufacturer or his authorized representative.
Any unauthorized modification must be avoided.

Input channel of D1072 accepts a signal from Hazardous Area/Hazardous Locations (thermocouple, resistance thermometer, transmitting potentiometer) and converts the signal to a $0 / 4-20 \mathrm{~mA}$ or 0/1-5 V or 0/2-10 V floating output to drive a load in Safe Area/Non Hazardous Locations. Presence of supply power is displayed by a green signaling LED, integrity of field sensor and connecting line can be monitored by a configurable burnout circuit which, if enabled, can drive output signal to upscale or downscale limit.
Burnout detection is also signaled by a red LED on the front panel and by an optocoupled transistor in common with power supply. Type D1072S has a single input and output channel, type D1072D has double input and output channel; type D1072D can also be programmed to interface a single input and obtain dual output channel (duplicator) or configurable output channel (outputs can repeat the corresponding inputs or be proportional to the sum or difference of the two input process variables or with low/high selector function).

Installation

D1072 series are temperature signal converter housed in a plastic enclosure suitable for installation on T35 DIN Rail according to EN50022.
D1072 unit can be mounted with any orientation over the entire ambient temperature range, see section "Installation in Cabinet" and "Installation of Electronic Equipments in Cabinet" Instruction Manual D1000 series for detailed instructions.
D1072 temperature signal converter operates at low level measuring signals, for best performance, install it far from heat sources (heat dissipating equipment) and wide temperature excursions, in example at the bottom of a cabinet with heat dissipating equipment, if any, at the top.
Electrical connection of conductors up to $2.5 \mathrm{~mm}^{2}$ are accommodated by polarized plug-in removable screw terminal blocks which can be plugged in/out into a powered unit without suffering or causing any damage (for Zone 2 or Division 2 installations check the area to be nonhazardous before servicing).
The wiring cables have to be proportionate in base to the current and the length of the cable.
On the section "Function Diagram" and enclosure side a block diagram identifies all connections.
Identify the number of channels of the specific card (e.g. D1072S is a single channel model and D1072D is a dual channel model), the function and location of each connection terminal using the wiring diagram on the corresponding section, as an example:
Connect 12-24 Vdc power supply positive at terminal " 3 " and negative at terminal " 4 ".
For model D1072S connect positive output of channel 1 at terminal "1" and negative output at " 2 ".
For model D1072D in addition to channel 1 connections above, connect positive output of channel 2 at terminal " 5 " and negative output at " 6 ".
For a thermocouple temperature input, connect thermocouple positive extension wire at terminal " 15 ", negative and shield (if any) at terminal "16" for channel 1 , and at terminal " 11 " and " 12 " for channel 2.
Make sure that compensating wires have the correct metal and thermal e.m.f. and are connected to the appropriate thermocouple terminal, note that a wrong compensating cable type or a swapped connection is not immediately apparent but introduces a misleading measurement error that appears as a temperature drift.
For a 3 wires thermoresistance temperature input connect thermometer wire A at terminal " 16 ", B and C interconnected wires at terminals " 14 " and " 13 " for channel 1 and at terminals " 12 ", " 10 ", " 9 " for channel 2.
Note that for a correct line resistance compensation in case of 3 wire sensor, wire A and B should have the same resistance.

Intrinsically Safe conductors must be identified and segregated from non I.S. and wired in accordance to the relevant national/international installation standards
(e.g. EN/IEC60079-14 Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines), BS 5345 Pt4, VDE 165,

ANSI/ISA RP12.06.01 Installation of Intrinsically Safe System for Hazardous (Classified) Locations, National Electrical Code NEC ANSI/NFPA 70 Section 504 and 505 ,
Canadian Electrical Code CEC), make sure that conductors are well isolated from each other and do not produce any unintentional connection.
The enclosure provides, according to EN60529, an IP20 minimum degree of mechanical protection (or similar to NEMA Standard 250 type 1) for indoor installation, outdoor installation requires an additional enclosure with higher degree of protection (i.e. IP54 to IP65 or NEMA type 12-13) consistent with the effective operating environment of the specific installation. Units must be protected against dirt, dust, extreme mechanical (e.g. vibration, impact and shock) and thermal stress, and casual contacts. If enclosure needs to be cleaned use only a cloth lightly moistened by a mixture of detergent in water.
Electrostatic Hazard: to avoid electrostatic hazard, the enclosure of D1072 must be cleaned only with a damp or antistatic cloth.
Any penetration of cleaning liquid must be avoided to prevent damage to the unit. Any unauthorized card modification must be avoided.
According to EN61010, D1072 series must be connected to SELV or SELV-E supplies.

Start-up

Before powering the unit check that all wires are properly connected, particularly supply conductors and their polarity, input and output wires, also check that Intrinsically Safe conductors and cable trays are segregated (no direct contacts with other non I.S. conductors) and identified either by color coding, preferably blue, or by marking. Check conductors for exposed wires that could touch each other causing dangerous unwanted shorts. Turn on power, the "power on" green led must be lit, output on each channel must be in accordance with the corresponding input signal value and input/output chosen transfer function. If possible change the sensor condition and check the corresponding Safe Area output.

PPC1090 Operation

The Pocket Portable Configurator type PPC1090 is suitable to configure the "smart" barrier of D1000 series. The PPC1090 unit is not ATEX, UL or FM approved and is only to be used in Safe Area/Non Hazardous Locations and prior to installation of the isolator and prior to connection of any I.S. wiring. Do not use PPC1090 configurator in Hazardous Area/Hazardous Locations. The PPC1090 configurator is powered by the unit (no battery power) when the telephone jack is plugged into the barrier (RJ12 6 poles connector type with $1: 1$ connection). It has a 5 digit display, 4 leds and four push buttons with a menu driven configuration software and can be used in Safe Area/Non Hazardous Locations without any certification because it plugs into the non intrinsically safe portion of circuit.

PPC1090 Configuration

The configuration procedure follows a unit specific menu.
The display shows the actual menu item, the led shows the channel configured and the push button actuates as "Enter", "Select", "Down" and "Up" key.
The "Enter" key is pressed to confirm the menu item, the "Select" key is pressed to scroll the menu item, the "Down" and "Up" keys are pressed to decrement or increment the numeric value of menu item. The "Up" key is also pressed to decrement the menu level. When the PPC1090 is plugged into the unit, the display shows the barrier model (first level menu).
Then press the "Enter" key to the second level menu and the "Select" key to scroll the menu voice. When the selected menu item is displayed press the "Enter" key to confirm the choice. Follow this procedure for every voice of the menu. When a numeric menu item is to be changed, press the "Select" key to highlight the character and then the "Up" and "Down" keys to select the number; confirm the modification with the "Enter" key. To return to a higher level menu press the "Up" key.

Menu item description D1072S or D1072D

1) D1072S or D1072D [1 Level Menu]

Displays Model D1072S single channel type or D1072D dual channel type. Press "Enter" key to second level menu.
2) CF/CF 1 or CF 2 [2 Level Menu]

Displays the parameters configuration menu. Press "Enter" key to configure the functional parameters, press the "Select" key to the next menu level item or "Up" key to return to first level.
3) $\quad \ln / \ln 1$ or $\ln 2 \quad$ [2 Level Menu]

Displays the input variable monitoring. Press "Enter" to display the current input value reading, press the "Select" key to the next menu level item or "Up" key to return to first level. 4) Out/Out 1 or Out 2 [2 Level Menu]

Displays the analog output variable monitoring. Press "Enter" to display the current output value reading, press the "Select" key to the next menu level item or "Up" key to return to first level.

D1072S Menu

D1072D Menu

Sens
[3 Level Menu]
Displays the input sensor type configuration. Press "Enter" to set the input sensor, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can choose between 26 different sensors; press "Select" key to change the input sensor and then the "Enter" key to confirm the choice. The input sensors are:
Tc B Thermocouple type B, -10 to $+1800^{\circ} \mathrm{C}$ range
Tc E Thermocouple type E, -250 to $+1000^{\circ} \mathrm{C}$ range
Tc J Thermocouple type J, -200 to $+750^{\circ} \mathrm{C}$ range
Tc K Thermocouple type K, -250 to $+1350^{\circ} \mathrm{C}$ range
Tc L Thermocouple type L, -200 to $+800^{\circ} \mathrm{C}$ range
Tc N Thermocouple type $\mathrm{N},-200$ to $+1300^{\circ} \mathrm{C}$ range
Tc R Thermocouple type $\mathrm{R},-50$ to $+1750^{\circ} \mathrm{C}$ range
Tc S Thermocouple type S, -50 to $+1750^{\circ} \mathrm{C}$ range
Tc T Thermocouple type T, -250 to $+400^{\circ} \mathrm{C}$ range
Tc U Thermocouple type $U,-200$ to $+400^{\circ} \mathrm{C}$ range
Tc LR Thermocouple type LR (russian standard), -200 to $+800^{\circ} \mathrm{C}$ range
Pt 100 Thermoresistance Pt 100Ω with 0.385 coefficient, -200 to $+850^{\circ} \mathrm{C}$ range
PP 100 Thermoresistance Pt 100Ω with 0.392 coefficient, -200 to $+625^{\circ} \mathrm{C}$ range
M 100 Thermoresistance Pt 100Ω with 0.391 coefficient (russian standard), -200 to $+650^{\circ} \mathrm{C}$ range
M 50 Thermoresistance $\mathrm{Pt} 50 \Omega$ with 0.391 coefficient (russian standard), -200 to $+650^{\circ} \mathrm{C}$ range
Ni 100 Thermoresistance Ni $100 \Omega,-50$ to $+180^{\circ} \mathrm{C}$ range
Ni 120 Thermoresistance Ni 120Ω, (russian standard), -75 to $+300^{\circ} \mathrm{C}$ range
CU 100 Thermoresistance Copper 100Ω (russian standard), -50 to $+200^{\circ} \mathrm{C}$ range
CU 53 Thermoresistance Copper 53Ω (russian standard), -50 to $+180^{\circ} \mathrm{C}$ range
CU 50 Thermoresistance Copper 50Ω (russian standard), -50 to $+200^{\circ} \mathrm{C}$ range
Pot Potentiometer, 0 to 100% range
Edc mV dc input from externally powered transmitter, -20 to +85 mV range
Pt 200 Thermoresistance Pt 200Ω with 0.385 coefficient, -160 to $+400^{\circ} \mathrm{C}$ range
Pt 300 Thermoresistance Pt 300Ω with 0.385 coefficient, -160 to $+250^{\circ} \mathrm{C}$ range
Tc A1 Thermocouple type A1 (russian standard), -10 to $+2500^{\circ} \mathrm{C}$ range
Tc A2 Thermocouple type A2 (russian standard) -10 to $+1800^{\circ} \mathrm{C}$ range
Tc A3 Thermocouple type A3 (russian standard), -10 to $+1800^{\circ} \mathrm{C}$ range
Tc S1 Thermocouple type S (russian standard), -50 to $+1600^{\circ} \mathrm{C}$ range
CU 46 Thermoresistance Copper 46Ω (russian standard), -200 to $+650^{\circ} \mathrm{C}$ range
Lead
[3 Level Menu]
Displays the input sensor connection type configuration for thermoresistance sensor. Press "Enter" to set the input connection type, press the "Select" key to the next menu level item or "Up" key to return to second level.
If you pressed "Enter" key, you can choose between 2 different sensor connection type; press "Select" key to change the input connection and then the "Enter" key to confirm the choice. The input connection types are:
3 ter 3 wire connection type thermoresistance
4 ter $\quad 4$ wire connection type thermoresistance
7) CJ Typ
[3 Level Menu]
Displays the reference junction compensation type configuration for thermocouple sensor. Press "Enter" to set the input compensation type, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can choose between 2 different sensor
compensation types; press "Select" key to change the type and then the "Enter" key to confirm the choice. The input compensation types are:
CJ Aut automatic compensation of ambient temperature (via option 91 thermoresistance sensor)
CJ Set fixed ambient temperature compensation, value is setted by CJ Ref menu item (do not require option 91 thermoresistance sensor)

Displays the ambient temperature compensation value configuration for thermocouple sensor. Press "Enter" to set the value, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can set the compensation value; press the "Select" key to highlight the character you want to change and then the "Up" and "Down" keys to select the number; confirm the modification with the "Enter" key. The value is settable from -60 to $+100^{\circ} \mathrm{C}$.

Rt Lin [3 Level Menu]

Displays the thermoresistance compensation value configuration for thermoresistance sensor. Press "Enter" to set the value, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can set the compensation value; press the "Select" key to highlight the character you want to change and then the "Up" and "Down" keys to select the number; confirm the modification with the "Enter" key. The value is settable from -5 to $+20 \Omega$
10)
[3 Level Menu]
Displays the analog output type configuration. Press "Enter" to set the analog output type and range, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can choose between 6 different output types; press "Select" key to change the output type and range and then the "Enter" key to confirm the choice. The output types are:

| $4-20$ | 4 to 20 mA current output (for SIL applications) | $1-5$ | 1 to 5 V voltage output | $2-10$ | 2 to 10 V voltage output |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $0-20$ | 0 to 20 mA current output | $0-5$ | 0 to 5 V voltage output | $0-10$ | 0 to 10 V voltage output |

$0-50$ to 5 V voltage output 0 to 5 V voltage output
$0-10-0$ to 10 V voltage output

Func [3 Level Menu]
Displays the analog output function type configuration. Press "Enter" to set the analog output function type, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can choose between 6 different output function types; press "Select" key to change the output type and then the "Enter" key to confirm the choice. The output function types are:
CH A output follows the first channel input
CH B output follows the second channel input
Add output follows the sum of the two input channels ($\mathrm{A}+\mathrm{B} / 2$)
Sub output follows the difference of the two input channels
HICH output follows the higher of the two input channels
LOCH output follows the lower of the two input channels
Dn Sc [3 Level Menu]
Displays the input low scale configuration. Press "Enter" to set the low scale input value, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can set the low input value; press the "Select" key to highlight the character you want to change and then the "Up" and "Down" keys to select the number; confirm the modification with the "Enter" key. The value is settable over the entire range of the sensor as specified.

Displays the input high scale configuration. Press "Enter" to set the high scale input value, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can set the high input value; press the "Select" key to highlight the character you want to change and then the "Up" and "Down" keys to select the number; confirm the modification with the "Enter" key. The value is settable over the entire range of the sensor as specified.
Burn [3 Level Menu]
Displays the burnout configuration. Press "Enter" to set the burnout condition, press the "Select" key to the next menu level item or "Up" key to return to second level. If you pressed "Enter" key, you can choose between 3 different burnout conditions; press "Select" key to change the burnout and then the "Enter" key to confirm the choice.
The condition types are:
none no burnout detection, the analog output follows the input value
$\mathrm{br} \mathrm{dn} \quad$ when in burnout condition, the analog output is forced at mA or V burnout lower value
br up when in burnout condition, the analog output is forced at mA or V burnout higher value

PPC1092, SWC1090 Configuration

INPUT SECTION:

Sensor: input sensor type
\square TC A1 thermocouple to STI90, GOST R8.585 2001 range from -10 to $+2500^{\circ} \mathrm{C}$TC A2 thermocouple to STI90, GOST R8.585 2001 range from -10 to $+1800^{\circ} \mathrm{C}$C A3 thermocouple to STI90, GOST R8.585 2001 range from -10 to $+1800^{\circ} \mathrm{C}$TC B thermocouple to STI90, NBS125, GOST R8.585 2001 range from +50 to $+1800^{\circ} \mathrm{C}$TC E thermocouple to STI90, NBS125, GOST R8.585 2001 range from -250 to $+1000{ }^{\circ} \mathrm{C}$TC J thermocouple to STI90, NBS125, GOST R8.585 2001 range from -200 to $+750^{\circ} \mathrm{C}$range from-200 to +750 C thermocouple to STI90, NBS125, GOST R8.585 2001 range from -250 to $+1350^{\circ} \mathrm{C}$TC L thermocouple to SIPT68, DIN43710 range from -200 to $+800^{\circ} \mathrm{C}$TC Lr thermocouple to STI90, GOST R8.585 2001 range from -200 to $+800^{\circ} \mathrm{C}$TC N thermocouple to STI90, NBS121, GOST R8.585 2001 range from -250 to $+1300^{\circ} \mathrm{C}$TC R thermocouple to STI90, NBS125, GOST R8.585 2001 range from -50 to $+1750^{\circ} \mathrm{C}$TC S thermocouple to STI90, NBS125, GOST R8.585 2001 range from -50 to $+1750^{\circ} \mathrm{C}$TC S1 thermocouple type S1 to SIPT68, russian range from -50 to $+1600^{\circ} \mathrm{C}$TC T thermocouple to STI90, NBS125, GOST R8.585 2001 range from -250 to $+400^{\circ} \mathrm{C}$TC U thermocouple to SIPT68, DIN43710 range from -200 to $+400^{\circ} \mathrm{C}$Pt 100 thermoresistance $\alpha=385$ to SIPT68, IEC751 range from -200 to $+850^{\circ} \mathrm{C}$Pt 200 thermoresistance $\alpha=385$ to SIPT68, IEC751 range from -150 to $+400^{\circ} \mathrm{C}$Pt 300 thermoresistance $\alpha=385$ to SIPT68, IEC751 range from -150 to $+250^{\circ} \mathrm{C}$
\square Pp 100 thermoresistance $\alpha=392$ to SIPT68, ANSI range from -200 to $+625^{\circ} \mathrm{C}$Pi 500 thermoresistance $\alpha=391$ to SIPT68, russian range from -200 to $+75^{\circ} \mathrm{C}$Pi 100 thermoresistance $\alpha=391$ to SIPT68, russian range from -200 to $+650^{\circ} \mathrm{C}$Pi 50 thermoresistance $\alpha=391$ to SIPT68, russian range from -200 to $+650^{\circ} \mathrm{C}$Ni 100 thermoresistance to SIPT68, DIN43760 range from -50 to $+180^{\circ} \mathrm{C}$
\square Ni 120 thermoresistance $\alpha=672$ to SIPT68, russian range from -75 to $+300^{\circ} \mathrm{C}$Cu 100 thermoresistance to SIPT68, russian range from -50 to $+200^{\circ} \mathrm{C}$Cu 53 thermoresistance to SIPT68, russian range from -50 to $+180^{\circ} \mathrm{C}$Cu 50 thermoresistance to SIPT68, russian range from -50 to $+200^{\circ} \mathrm{C}$
$\square \mathrm{Cu} 46$ thermoresistance to SIPT68, russian range from -200 to $+650^{\circ} \mathrm{C}$
\square Pot 3 wires transmitting potentiometer, 50Ω to $20 \mathrm{~K} \Omega$, range from 0 to 100%
\square E DC millivolt signal range from -20 to +85 mV
Lead: input sensor connection type (thermoresistance only)
$\square 3$ wire 3 wires connection type
$\square 4$ wire 4 wires connection type
Downscale: input value of measuring range corresponding to defined low output value.
Upscale: input value of measuring range corresponding to defined high output value.
Cold Junction: reference junction compensation type (thermocouple only)
\square Automatic ambient temperature compensation automatic by OPT1091 sensor
\square Fixed programmable temperature compensation at fixed temperature
CJ Reference: temperature compensation value (Cold Junction type Fixed only), range from -60 to $+100^{\circ} \mathrm{C}$.
RTD line resist: line resistance error compensation value (thermoresistance only), range from -5 to $+20 \Omega$.
INPUT TAG SECTION:
1: first channel tag
2: second channel tag
Each channel has independent configurations.

OUTPUT SECTION:

Output: analog output type
$\square 4-20 \mathrm{~mA}$ current output range from 4 to 20 mA (for SIL applications)
$\square 0-20 \mathrm{~mA} \quad$ current output range from 0 to 20 mA
$\square 1-5 \mathrm{~V}$ voltage output range from 1 to 5 V
$\square 0-5 \mathrm{~V} \quad$ voltage output range from 0 to 5 V
$\square 2-10 \mathrm{~V} \quad$ voltage output range from 2 to 10 V
$\square 0-10 \mathrm{~V} \quad$ voltage output range from 0 to 10 V
Burnout: analog output burnout state
\square None burnout function is disabled;
analog output represents the input measure as configuredDownscale analog output is forced at mA Burnout or V Burnout lower value \square Upscale analog output is forced at mA Burnout or V Burnout higher value Function: analog output function
\square Ch. A analog output represents input of first channel \square Ch. B analog output represents input of second channel \square Add analog output represents the sum of the two input channels: $(A+B) / 2$ \square Sub analog output represents the difference of the two input channels: A-B \square High Ch analog output represents the higher of the two input channels
\square Low Ch analog output represents the lower of the two input channels
Output Limits: current or voltage analog output normal working range limits or burnout detection range limits:
mA working: current analog output range in normal working condition.
mA Burnout: current analog output lower and higher value for burnout signalation.
V working: voltage analog output range in normal working condition.
V Burnout: voltage analog output lower and higher value for burnout signalation.
Each channel has independent configurations.

